
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

74HC/HCT4520

FEATURES

- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4520 are high-speed Si-gate CMOS devices and are pin compatible with the "4520" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4520 are dual 4-bit internally synchronous binary counters with an active HIGH clock input (nCP₀) and an active LOW clock input (nCP₁), buffered outputs

from all four bit positions $(nQ_0 \text{ to } nQ_3)$ and an active HIGH overriding asynchronous master reset input (nMR).

The counter advances on either the LOW-to-HIGH transition of nCP_0 if nCP_1 is HIGH or the HIGH-to-LOW transition of nCP_1 if nCP_0 is LOW. Either nCP_0 or nCP_1 may be used as the clock input to the counter and the other clock input may be used as a clock enable input. A HIGH on nMR resets the counter (nQ_0 to $nQ_3 = LOW$) independent of nCP_0 and nCP_1 .

APPLICATIONS

- Multistage synchronous counting
- Multistage asynchronous counting
- Frequency dividers

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	ТҮР		
SYMBOL	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay nCP_0 , $n\overline{CP}_1$ to nQ_n	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	24	24	ns
t _{PHL}	propagation delay nMR to nQ _n		13	13	ns
f _{max}	maximum clock frequency		68	64	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per counter	notes 1 and 2	29	24	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

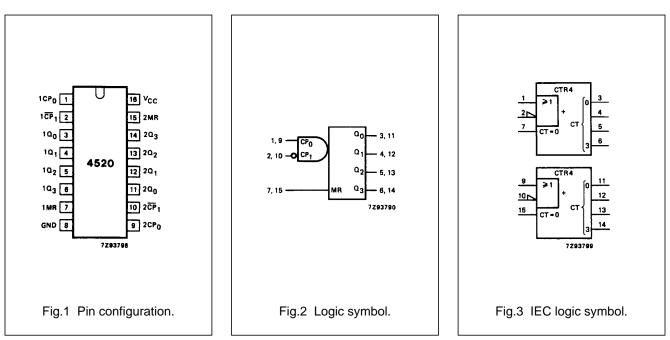
 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$

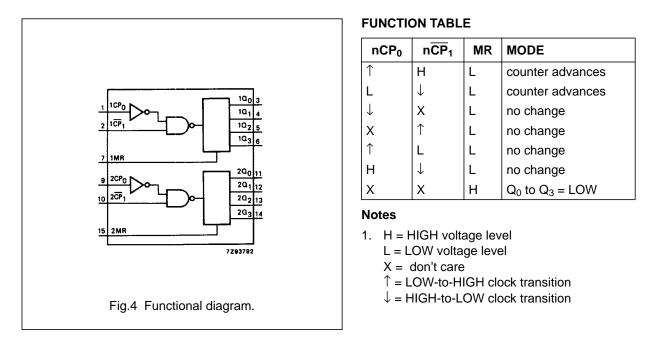
C_L = output load capacitance in pF

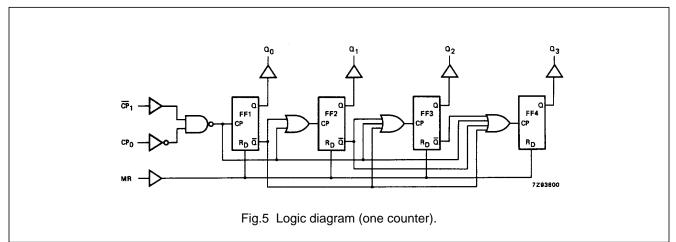
 V_{CC} = supply voltage in V

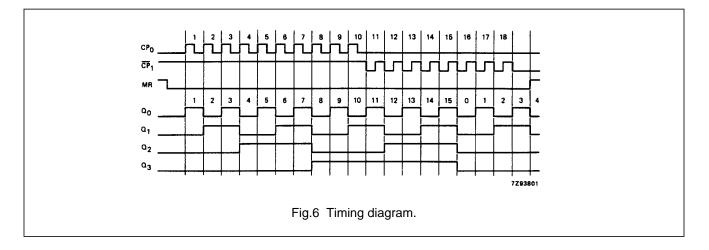

2. For HC the condition is $V_1 = GND$ to V_{CC} For HCT the condition is $V_1 = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".


PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
1, 9	1CP ₀ , 2CP ₀	clock inputs (LOW-to-HIGH, edge-triggered)
2, 10	$1\overline{CP}_1, 2\overline{CP}_1$	clock inputs (HIGH-to-LOW, edge-triggered)
3, 4, 5, 6	$1Q_0$ to $1Q_3$	data outputs
7, 15	1MR, 2MR	asynchronous master reset inputs (active HIGH)
8	GND	ground (0 V)
11, 12, 13, 14	$2Q_0$ to $2Q_3$	data outputs
16	V _{CC}	positive supply voltage



74HC/HCT4520

74HC/HCT4520

74HC/HCT4520

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HC									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.	1	(•)	
t _{PHL} / t _{PLH}	propagation delay nCP ₀ to nQ _n		77 28 22	240 48 41		300 60 51		360 72 61	ns	2.0 4.5 6.0	Fig.8
t _{PHL} / t _{PLH}	propagation delay nCP ₁ to nQ _n		77 28 22	240 48 41		300 60 51		360 72 61	ns	2.0 4.5 6.0	Fig.8
t _{PHL}	propagation delay nMR to nQ _n		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.9
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.8
t _W	clock pulse width HIGH or LOW	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.7
t _W	master reset pulse width HIGH	120 24 20	39 14 11		150 30 26		180 36 31		ns	2.0 4.5 6.0	Fig.7
t _{rem}	removal time nMR to nCP ₀ ; n \overline{CP}_1	0 0 0	-28 -10 -8		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.7
t _{su}	$\begin{array}{c} \text{set-up time} \\ n\overline{CP}_1 \text{ to } n\underline{CP}_0; \\ n\overline{CP}_0 \text{ to } n\overline{CP}_1 \end{array}$	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8
f _{max}	maximum clock pulse frequency	6.0 30 35	19 58 69		4.8 24 28		4.0 20 24		MHz	2.0 4.5 6.0	Fig.7

74HC/HCT4520

DC CHARACTERISTICS FOR 74HCT

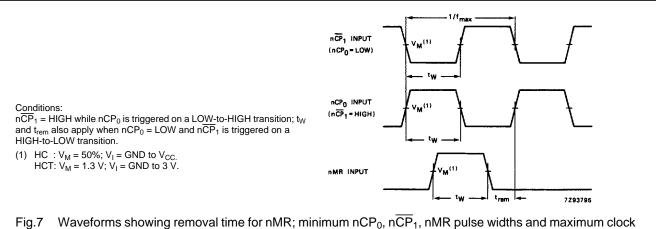
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

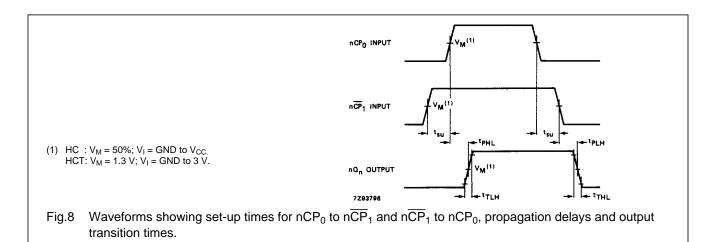
Note to HCT types

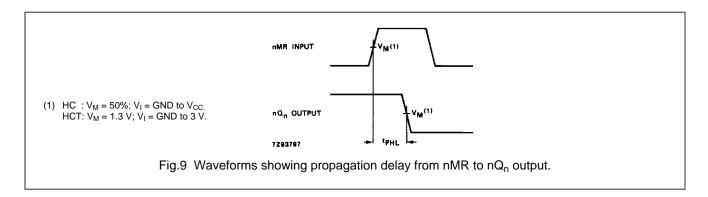
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
$nCP_0, n\overline{CP}_1$	0.80
nMR	1.50


AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$


SYMBOL	PARAMETER	T _{amb} (°C) 74HCT								TEST CONDITIONS	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nCP_0 to nQ_n		28	53		66		80	ns	4.5	Fig.8
t _{PHL} / t _{PLH}	propagation delay nCP ₁ to nQ _n		25	53		66		80	ns	4.5	Fig.8
t _{PHL}	propagation delay nMR to nQ _n		16	35		44		53	ns	4.5	Fig.9
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.8
t _W	clock pulse width HIGH or LOW	20	10		25		30		ns	4.5	Fig.7
t _W	master reset pulse width HIGH	20	12		25		30		ns	4.5	Fig.7
t _{rem}	removal time nMR to nCP ₀ ; n \overline{CP}_1	0	-8		0		0		ns	4.5	Fig.7
t _{su}	set-up time $n\overline{CP}_1$ to $n\overline{CP}_0$; $n\overline{CP}_0$ to $n\overline{CP}_1$	16	6		20		24		ns	4.5	Fig.8
f _{max}	maximum clock pulse frequency	30	58		24		20		MHz	4.5	Fig.7


74HC/HCT4520

AC WAVEFORMS

pulse frequency.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.